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Abstract. We are developing a pixel-level
cloud-type classifier for the Multi-angle
Imaging SpectroRadiometer (MISR), an in-
strument used to study clouds and aerosols
from NASA’s Terra satellite. To augment
MISR’s existing high-level products (in-
cluding cloud masks, cloud heights, and
aerosol optical depth retrievals), our cloud-
type classifier labels each 1.1-km pixel as
clear, or as belonging to one of several types
of cloud. In the past, similar classifiers have
been developed for other remote-sensing in-
struments using various machine learning
techniques, such as artificial neural net-
works. However, support vector machines
(SVMs) are not typically used, in part be-
cause the computational cost of evaluating
new examples with an SVM can be much
higher. Our novel approach to achieving
high classification accuracy within the com-
putational requirements of the operational
MISR processing system involves training
a very large multi-class SVM using thou-
sands of training points and then apply-
ing cutting-edge reduced-set techniques to
yield a computationally manageable num-
ber of support vectors. The resulting prod-
uct will help provide new insights for those
constructing cloud climatologies, model-
ing radiative transfer through clouds, and
studying the effects of clouds on climate,
in addition to demonstrating the effective-
ness of using SVMs in a production science
setting.

1 Scientific Motivation

Because different cloud types are formed by different
mechanisms, cloud type is often indicative of underly-
ing atmospheric processes. In that regard, in satellite

data analysis it is useful to separate stratiform (lay-
ered) clouds from cumuliform (puffy) clouds, at the
very minimum. This is because the radiative and hy-
drological impacts of these two cloud types are very
different. Stratiform clouds are thin and relatively
dry clouds that cover large areas. They have a pro-
found effect on the radiative properties of the earth-
atmosphere system due to their ability to reflect large
amounts of solar radiation back to space. However,
stratiform clouds contain only a very small portion
of the total atmospheric liquid water. Cumuliform
clouds behave in the opposite manner. These clouds
cover small areas and have only a small radiative im-
pact, but contain most of the atmospheric liquid wa-
ter. Additionally, these two cloud types are indicative
of the direction of atmospheric heat transport: strati-
form clouds tend to transport heat horizontally, while
cumuliform clouds represent heat transport primarily
in the vertical.

A second motivation for classifying satellite obser-
vations of clouds into different cloud types is that this
allows satellite observations to be related to surface-
based observations. Surface weather observers are
trained to group clouds into 10 standard types and
extensive global compliations exist of these observa-
tions. Comparison between satellite and surface ob-
servations is facilitated by grouping satellite mea-
surements into similar categories. The International
Satellite Cloud Climatology Project (ISCCP), for ex-
ample, attempts to do this by associating exactly one
cloud type with particular ranges of cloud-top height
and cloud optical thickness [1]. However, comparisons
of ISCCP and surface climatologies (e.g., Hahn et
al. [2]) have found that this simple approach does
not quite work properly and ISCPP can only reliably
distinguish a limited set of combined cloud classes.
Clearly, it would be desirable to do better.



An increasingly important motivation for cloud
classification in satellite imagery is climate monitor-
ing. Global changes in the amounts of different cloud
types is a potential signal of climate change. Within
the operational forecast community as well there is
interest in methods of automatic satellite cloud clas-
sification. Although weather forecasters typically rely
on imagery from geostationary satellites, such as the
Geostationary Operational Environmental Satellites
(GOES), techniques for automatic cloud classification
developed for other satellite instruments, such as the
Multi-angle ITmaging SpectroRadiometer (MISR) on-
board NASA’s Terra satellite, could potentially lead
to new insights that could be incorporated into an
automatic cloud classifier for GOES imagery.

2 Related Work

Perhaps the most visible example of automatic cloud-
type classification using machine learning is Bankert’s
real-time classifier for GOES images available on the
web [3]. While the classification algorithm it uses
is simple (1-nearest-neighbor), the features were se-
lected carefully using a backward sequential selec-
tion (BSS) algorithm, and the system boasts an im-
pressively large collection of training data (10 cloud
types classified in over 5,000 GOES scenes). More
details about the approach are described in a Tag,
Bankert et al. paper on Advanced Very High Resolu-
tion Radiometer (AVHRR) cloud-type classification
[4]. Overall their approach leads to fast and accu-
rate classification. However, some shortcomings are
apparent, including limited detection of thin cirrus
clouds and small cumulus clouds, as well as multilayer
systems of cirrus over low clouds being misclassified
as mid-level clouds. The latter problem, in particu-
lar, occurs when low and high cloud infrared temper-
atures are averaged to obtain the associated cloud
height, a problem that would be alleviated if cloud
heights could be determined by another method.
Dozens of other papers exist on automatic satellite
cloud-type classification using learning algorithms.
Some pioneering work was done by Welch et al. [5],
comparing the use of discriminant analysis and two
types of neural networks to classify pixels in AVHRR
images as one of a number of classes, including five
cloud types. Bankert et al. [6] [7] [8] compared neural
networks to decision trees and a 1-nearest-neighbor
classifier in GOES data. Tian et al. [9] used proba-
balistic neural networks to classify 10 cloud types in
GOES images using both spatial and temporal fea-

tures. Saitwal et al. [10] extended Tian et al.’s work
to nighttime classification. Baum et al. [11] used fuzzy
logic to detect multilayer systems in AVHRR scenes
based on examples getting classified into more than
one of eight trained cloud types. Azimi-Sadjadi and
Zekavat [12] used a hierarchical arrangement of sup-
port vector machines to classify six different cloud
types in infrared GOES-8 imagery, while Lee et al.
[13] investigated using a multi-class support vector
machine to distinguish between ice and water clouds
in MODIS images. Li et al. [14] used the maximum
likelihood technique to improve on the basic cloud
classification provided in the MODIS standard prod-
uct.

3 Background

We used Support Vector Machines (SVMs) to con-
struct a cloud-type classifier for image data from
the Multi-angle Imaging SpectroRadiometer (MISR)
satellite instrument. This section provides a brief
overview of SVMs and the characteristics of the MISR
instrument.

3.1 Support Vector Machines

SVMs [15] are a popular technique for supervised
classification. Training a binary SVM is a quadratic
optimization procedure that finds an optimal hy-
perplane separating positive and negative example
vectors, balancing accuracy with generalization
performance by maximizing the margin. The margin
is simply the distance from the hyperplane to the
nearest positive and negative labeled feature vectors.
However, since most problems are not linearly
separable, SVMs typically use a kernel function that
implicitly projects two example vectors in input
space (X, X;) into (possibly infinite) feature space
vectors (P(X;), #(X;)) and returns their dot product
in that feature space. Popular kernels (with model
selection parameters a, p, o) include:

linear: K(u,v) =u-v,
polynomial: K(u,v) = (u-v+ a)P,
RBF: K(u,v) = exp(— 525 ||u—v][|?)

It is also common to use normalized kernels, which
makes it more practical to work with high-degree
polynomials:

W=

Knorm (u,v) := K(u,v)K (u, u)_%K(v, v)”



The hyperplane resulting from SVM training is
defined implicitly by a vector of weights «; on the
original training examples. Many of these «; will be
zero and the associated example vectors can be dis-
carded. The example vectors whose corresponding «;
is nonzero — called support vectors — are needed in or-
der to determine the classification of new points. Note
that when a linear kernel is used, it is possible to com-
pute the hyperplane normal vector by summing the
a-weighted support vectors. For any nonlinear ker-
nel, though, the hyperplane normal vector exists in
feature space and may not have a pre-image in input
space. As a result, classifying a new example using
a SVM can be expensive, requiring one dot-product
calculation per support vector. Because more difficult
classification problems tend to require more support
vectors, SVMs have developed a reputation for being
powerful but inefficient.

SVM reduced-set methods [16] use various tech-
niques to decrease the number of support vectors,
either by eliminating those support vectors that con-
tribute the least (and re-weighting the remaining
ones) or by explicitly solving for the pre-image of
the hyperplane normal vector. While previous results
have shown impressive reductions in the number of
support vectors with minimal loss of generalization
performance on some problems, many other prob-
lems proved to be irreducible, and the reduction al-
gorithms were typically very slow. However, recent
breakthroughs (described in greater detail below)
have resulted in even more sophisticated reduced-set
techniques that overcome many of these limitations.

Although there have been methods developed for
“true” multi-class SVMs (e.g., [17]), it is usually
more practical to perform multi-class classification
by training several binary SVMs [12] [18]. Common
methods for solving multi-class problems using bi-
nary SVMs include one-vs-one, one-vs-all, and di-
rected acyclic graph (DAG).

3.2 MISR

The Multi-angle Imaging Spectroradiometer (MISR)
is one of five instruments aboard NASA’s Terra satel-
lite, which follows LandSat 7 in polar orbit around
the Earth at an altitude of 705 km with an equa-
torial crossing time of 10:30 am (local time) for the
descending portion of the orbit. MISR has nine push-
broom cameras pointed in different directions along
the orbital path, ranging from 70° forward to 70° aft-
ward. Each camera views four spectral bands (blue,
green, red, and near-infrared) with a resolution of 1.1

km x 1.1 km per pixel (plus limited coverage at 275
m X 275 m). The images are projected to a common
grid and coregistered during automatic ground pro-
cessing, resulting in nine views of each scene with a
swath width of about 350 km.

There are at least three ways that MISR’s multi-
ple angles yield cloud information not available via
conventional satellite means. First, thin clouds and
aerosols are more opaque at oblique angles because
the photon path length is longer, making these at-
mospheric constituents more apparent against the
background surface. Second, objects in MISR im-
agery can be identified by their angular signature.
Because aerosols and clouds scatter radiation dif-
ferently into different directions at different wave-
lengths, this knowledge can be exploited to help char-
acterize clouds and aerosols. Third, because the cam-
eras are registered to the surface ellipsoid, objects
above the surface appear displaced due to the paral-
lax effect (see Figure 1). Operationally, an automatic
pattern-matching algorithm is used in the instrument
software to determine the disparity of each pixel and
infer the height using triangulation. This is compli-
cated by the fact that there is a seven minute de-
lay between the imaging times of the first and last
cameras to view each scene and approximately a one
minute delay between images taken by each camera,
during which time clouds may have moved. However,
the cloud-top height (+ 500 m at a spatial resolu-
tion of 1.1 km) and the height-resolved mesoscale
wind (£ 4 m/s at a spatial resolution of 70.4 km)
can be retrieved operationally by various stereoscopic
combinations of views [19] [20]. The stereoscopically-
derived height provides an independent check against
the cloud-top height measurements made by other in-
struments using measurements of emitted radiation
and assumptions about the thermal structure of the
atmosphere.

While several methods have been developed to ob-
tain scientifically useful measurements from multi-
angle satellite data, the full parameter space of infor-
mation remains largely unexplored. We have found
that machine learning techniques allow us to explore
this parameter space much more quickly.

4 Previous Work

This work builds on our previous successes develop-
ing pixel classifiers for MISR [21]. We created a bi-
nary cloud mask (distinguishing cloudy pixels from
clear pixels) using a total of 156 features as input.



Fig. 1. On the left, MISR’s view of multilayer clouds over the Molucca Sea, with the northeastern tip of the Indonesian
island of Sulawesi in the upper-left of the image, taken on December 1, 2004. On the right, MISR’s 70-degree forward
view of the same scene. Note both the increased opacity of the cirrus clouds and the vertical displacement of the
clouds due to their height above the surface. Path 111, Orbit 26354, Blocks 89-90, courtesy Langley Atmospheric

Sciences Data Center.

The features were derived from raw MISR radiances
from all four spectral bands and the three most nadir-
pointing cameras, as well as several neighboring pixels
for context. We trained two separate SVMs: one spe-
cializing in clouds over water and one over land (the
MISR standard product identifies whether each pixel
is over water or over land). We used two of MISR’s
existing cloud masks to provide training labels for
these two SVMs, but only over surfaces where we
knew the existing cloud masks tended to be accu-
rate. The resulting SVMs we trained over water and
land had 656 and 2456 support vectors, respectively.
To validate the performance, we independently la-
beled 3,500 pixels randomly distributed throughout
the globe, finding that the existing cloud masks each
had error rates of approximately 12% relative to these
expert labels, while our SVM cloud mask had an error
rate of approximately 6%.

Subsequently, we developed improved reduced-set
techniques that successfully reduced both SVMs used
in the cloud mask to 20 support vectors each. The ac-
curacy of the land SVM remained unchanged, while
the accuracy of the water SVM decreased by only
0.3%. The resulting classifier requires just slightly
more than 156 x 20 multiply-add instructions per
pixel, which we determined was fast enough to run as
part of the standard MISR data processing. We have
completed a test of processing the SVM cloud mask at
the NASA Langley Atmospheric Sciences Data Cen-
ter and are working on integrating it and making it
available as a standard MISR product later this year.

We also developed two other binary classifiers for
MISR using the same approach. Thin cirrus clouds
can have potentially large radiative effects on the
atmospheric and surface energy budgets and they
present an impediment to the operational retrieval of
clear sky atmospheric and surface properties. How-
ever, thin cirrus clouds are notoriously difficult to
detect using standard satellite remote sensing tech-
niques. Our SVM cirrus cloud detector was trained
using expert labels with essentially the same inputs
as the cloud mask described above. However, instead
of using the three most nadir pointing MISR cam-
eras, we used the three most forward cameras in the
northern hemisphere and three most aftward cam-
eras in the southern hemisphere. This approach took
advantage of the unique capabilities of MISR rela-
tive to other instruments by utilizing the increased
path length of photons being scattered in the for-
ward direction at these oblique viewing angles. Fi-
nally, a SVM smoke detector was developed to dis-
tinguish smoke and some related aerosols from cloudy
and clear pixels in MISR imagery. Because the detec-
tion, as opposed to the precise location, of the smoke
was of primary interest, we experimented with using
data from five of MISR’s nine cameras as input. This
resulted in improved detection of smoky regions due
to the increased photon path length for the oblique
cameras used, as well as the characteristic angular
signature of smoke, which was made more apparent
through the use of a larger number of angles. These
two classifiers have been validated, but not yet to the



same degree of precision as the cloud mask. We hope
to finish the validation effort and make both these
classifiers available as MISR data products later in
the year, as well.

5 Methodology

Our previous three MISR classifiers were binary (e.g.
cloudy vs. clear). As our goal in this new research
was to develop a cloud-type classifier, we needed to
deal with many new issues associated with a multi-
class learning problem, such as how to handle ex-
amples that could conceivably belong to more than
one class. After choosing the classes to label, we be-
gan by creating expert labelings of 30 scenes, each
one approximately a quarter of a MISR swath, about
400 x 5,000 pixels. Our strategy was not to label ev-
ery pixel, nor to choose individual scattered pixels; in-
stead we used a graphical interface to rapidly “paint”
labels over the top of the image wherever we were
reasonably confident about the classification, avoid-
ing cloud edges and multilayer systems. Using this
technique we labeled over 3 million pixels across the
30 scenes. With practice, we found that MISR is par-
ticularly amenable to expert labeling by visual in-
spection, because we could rapidly flip between the
different camera views of one scene and see its unam-
biguous three-dimensional structure.

We originally considered 12 classes, made up of
4 non-cloud classes and 8 cloud types, but later
combined some of the classes that were difficult to
distinguish, resulting in the choice of the following
eight classes:

Abbrev. Class

Ocean Clear Ocean

Land  Clear Land

Ice Ice or Snow

m Sc  Marine Stratus or Stratocumulus

sm Cu Small Cumulus

Cb Cumulus Congestus or Cumulonimbus
Ci Cirrus

St Other Stratiform

Examples from every class showed up in at least three
distinct scenes.

To construct the feature vectors for classification,
we started with the feature vector we used success-
fully for cloud detection, which will now be described
in greater detail. One of the principal ideas behind
our feature vectors is deceptively simple: in order to

classify a single pixel, we use all the values from a
5 x5 (or larger) region of pixels surrounding the cen-
tral pixel as features. One source of inspiration for
this idea was the observation that SVMs were able
to successfully classify images of handwritten digits
from the MNIST database with a feature vector con-
sisting simply of all of the 27 x 27 grayscale values
making up the image [22].

Using these feature vectors, we trained a multi-
class SVM using the one-vs-all method. Of the 30
labeled scenes available, we arbitrarily chose 24 for
training and 6 as holdouts for validation.

To choose the SVM hyperparameters (the kernel
function and regularization parameter C'), we chose
2,000 training examples (250 from each class) and
2,000 test examples. We then exhaustively searched
a space of several dozen kernel functions and values of
C from 0.1...3000, training a multi-class SVM with
each set of parameters. We chose the kernel and C
combination that had roughly the lowest test error.
However, all other things being equal, we favored pa-
rameters that resulted in fewer support vectors, based
on our general observation that the same accuracy
with fewer support vectors is more likely to gener-
alize. The best choice turned out to be a normal-
ized polynomial kernel with p = 17 and ¢ = 1, and
C = 50.

After selecting the hyperparameters, we trained
a larger SVM using 8,000 training examples (1,000
from each class) using the one-vs-all method. (We
also tried one-vs-one and got similar results, but
one-vs-all was preferable for reducing, as will be
seen later.) On a holdout set of 8,000 examples,
the overall accuracy was 78.6%, with the following
confusion matrix:

Cb Ci St
0.6%]| 10.5%] 0.0%| 0.7%]| 0.0%
Land| 0.0%(99.7%| 0.0%| 0.0%| 0.1%| 0.0%| 0.2%| 0.0%
Ice| 0.0%| 0.0%|58.5%| 0.2%| 0.8%|21.2%(13.1%| 6.2%
m Sc| 0.5%| 0.0%| 0.1%|66.7%| 10.1%|13.6%| 3.7%| 5.3%
sm Cu|18.1%| 2.9%| 0.1%|12.5%| 61.9%| 0.0%| 4.5%| 0.0%
Cb| 0.0%| 0.0%| 4.0%| 7.0%| 0.1%|87.1%| 1.5%| 0.3%
Ci| 1.2%| 0.3%| 0.2%| 5.4%| 7.2%| 2.9%|82.8%| 0.0%
St| 0.0%| 0.0%| 0.0%| 4.4%| 0.0%| 9.9%| 0.7%|85.0%

Ocean| Land Ice| m Sc|sm Cu

Ocean|88.2%| 0.0%| 0.0%

From the confusion matrix, we gathered that the
most difficult classes to separate were ice, marine
stratocumulus and small cumulus. Interestingly, we
found that ice was often being misclassified as cu-
mulonimbus, perhaps because they are both highly
reflective surfaces. However, it would be easy to dis-
tinguish between these two classes with additional
height information available from MISR.



Fig. 2. On the left is the image of the automatically generated stereo height product for the MISR image seen in
Figure 1. Darker-colored pixels are higher above the surface, up to a maximum of about 12 km in this particular
scene. The noise is mainly due to blunders from the stereo matching algorithm. On the right is the smoothed stereo

image used to provide an additional feature for our SVM.

The misclassification of small cumulus as ocean
(and vice versa) is not unexpected. Small cumulus
cloud fields are often broken, which allows the ocean
surface to be seen between clouds. This will create
particular difficulties at the edges of cloud fields. The
vertical development of these clouds also introduces
a parallax effect that can cause the classifier to in-
correctly classify pixels as cloudy because clouds are
seen in one camera and not another.

5.1 Incorporating stereo height

Initially we were concerned about incorporating
height information because MISR’s stereo-derived
height product, while extremely accurate overall,
tends to be noisy at the pixel level. Therefore, we de-
veloped an appropriate smoothing algorithm for this
product to allow its use as an additional input for our
feature vectors. An image of the stereo height prod-
uct before and after smoothing can be seen in Figure
2.

Adding the smoothed stereo height to our feature
vector resulted in significant improvement in the
classifier performance as shown in the confusion
matrix below. Overall, after incorporating stereo
height, the accuracy improved from 78.6% to 85.5%:

Cb Ci St
0.0%| 3.0%| 0.0%
0.0%| 0.0%| 0.0%
1.7%| 2.5%| 6.1%

m Sc|sm Cu
0.6%| 8.5%

Ocean| Land Ice
87.9%| 0.0%| 0.0%
0.0%1(99.9%| 0.0%| 0.0%| 0.1%
0.0%| 0.0%|87.2%| 1.0%| 1.5%
0.4%| 0.0%| 0.3%|71.0%| 9.8%| 7.7%| 4.1%| 6.7%
sm Cu|14.3%| 4.3%| 0.0%|12.8%| 68.1%| 0.1%| 0.4%| 0.0%
Cb| 0.0%| 0.0%| 0.1%| 6.0%| 0.2%(92.1%| 1.4%| 0.2%
Ci| 0.4%| 0.4%| 0.0%| 3.0%| 1.7%| 2.9%(91.6%| 0.0%
St| 0.0%| 0.0%| 0.0%| 1.6%| 0.0%| 9.4%| 1.2%|87.8%

Ocean
Land
Ice

m Sc

The confusion matrix shows that the most challeng-
ing classes all improved their accuracies significantly.

5.2 Smoothing the results and applying the
cloud mask

The resulting multi-class SVM classified each pixel as
one of eight different classes. Based on visual inspec-
tion of the results, in many regions the classification
appeared to be quite good. However, we found that
the resulting classification images were quite noisy.
As was done in [4] and several other cloud-type clas-
sifiers, we attempted to smooth the resulting image
and avoid noise. The results of our smoothed classi-
fication can be seen in Figure 3.

Rather than just using the class of each pixel in the
smoothing, we found it was advantageous to use the
relative weights of each binary SVM in the smooth-
ing process, taking advantage of the fact that we were
using a one-vs-all multi-class SVM. In the one-vs-all
paradigm, one binary SVM for each class is designed
to determine whether the example is in that class, or
in one of the other classes. The output of the binary
SVM is a scalar, indicating the distance between that
example and the decision hyperplane, with a larger
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Fig. 3. On the left is the same MISR image seen in Figure 1. On the right, the result of our final, smoothed cloud-type
classification algorithm, which has detected regions of cumulonimbus (Cb), cirrus (Ci), some small cumulus clouds
(sm Cu), some small marine stratocumulus (m Sc), water and land.

value indicating a farther distance from the hyper-
plane and the sign indicating whether it falls on the
positive or negative side. Class membership is then
decided by taking the argmax of all of the binary
SVMs.

So for every pixel we have a vector of eight binary
SVM outputs, one for each of our eight classes. In
the simplest case, one of these outputs will be posi-
tive and the other seven will be negative, indicating
that the pixel in question clearly belongs to one class.
However, for ambiguous pixels, or those on the bor-
der between regions, several classes may have positive
values, in which case the largest one is chosen as the
most likely class. In order to smooth the classifier,
then, we averaged each vector with the vectors of sev-
eral neighboring pixels, with a neighbor contributing
less depending on the square of its distance from the
pixel in question. After this averaging, the argmax of
each vector was taken to determine the class.

To better understand the consequences of this type
of smoothing, consider a single, isolated pixel classi-
fied as class 1, when all of its neighbors were classi-
fied as class 2. If the isolated pixel was very confi-
dently class 1 (the class 1 binary SVM output was
very large, and the other values were very negative),
the averaging would not change anything. However,
if the isolated pixel was right on the border, perhaps
with classes 1 and 2 having almost equal weight, then
the averaging would change the pixel’s classification
to class 2. We felt that this strategy did the best job
of encouraging regions to be more homogeneous while
allowing small heterogeneous regions when they were
detected with above average confidence. One could

imagine making the degree of smoothing a tunable
parameter.

Finally, in generating the final cloud-type classi-
fication product, we made use of our existing SVM
cloud mask and the existing MISR land/water clas-
sification to refine our results. The idea is that when
training our cloud-type classifier, we were focusing
on how best to distinguish between different types
of clouds, and less on how to determine whether a
pixel was cloudy or clear. Especially after our smooth-
ing, we found that far more pixels were classified as
some type of cloud than would normally be consid-
ered cloudy pixels. Therefore, as an additional pass,
we replaced each pixel which our SVM cloud mask
marked as “clear,” with either the clear land or clear
water class, as appropriate.

5.3 Reducing the multi-class SVM

Several higher-level products are generated from the
raw radiance data and distributed along with MISR
data. These include several cloud masks, the stereo-
derived height products, aerosol optical depths, and
top-of-atmosphere albedos. Our goal was to create a
classifier that was computationally fast enough that
we could integrate it into the data processing system
that automatically generates MISR products at the
Langley Atmospheric Sciences Data Center. While it
was difficult to determine the exact amount of pro-
cessing time potentially available, very roughly we
determined that we could run a single binary SVM
that gathered approximately 150 features and used



in the vicinity of 200-300 support vectors. Unfortu-
nately, the multi-class SVM we had trained to do
cloud-type classification had 3,340 support vectors
(total, including all eight binary SVMs in the one-
vs-all framework), at least one order of magnitude
too many.

Some of our previous research includes methods to
classify new examples using SVMs more efficiently
[23] by reordering the support vectors on the fly, skip-
ping most of the support vectors for “easy” examples,
and only using the full SVM for the most difficult
(ambiguous) examples. While we have seen speedups
as high as 12x with this technique, actual speedups
on this particular problem were less, and any efficient
implementation of this algorithm is enormously more
complicated than the normally straightforward SVM
evaluation formula, making it a poor candidate for
integrating into a production software system.

Instead, we investigated the use of reduced-set
methods [16], which attempt to approximate the hy-
perplane normal vector using a small number of vec-
tors instead of all of the support vectors. While we
found the theory to be quite solid, the pre-image
algorithm in [16], which maps a feature space vec-
tor back to the input space, often got stuck in local
minima, making the reduction process very frustrat-
ing. Therefore, we developed our own pre-image al-
gorithm, using Differential Evolution [24] to find a
rough pre-image, then applying gradient descent to
refine it. Another improvement we made is that after
the reduced-set vectors have been computed we read-
just the weights and bias through a modified SVM
training algorithm. The details of our approach will
be presented in a future paper.

We had great success applying our new reduced-set
method to binary SVMs, for example reducing our bi-
nary cloud mask over land from 2456 support vectors
to exactly 20, with essentially no loss in overall accu-
racy. We are still researching the best way to reduce a
multi-class SVM. One straightforward technique that
we have used successfully is to reduce each of the in-
dividual binary SVMs in a one-vs-all classifier, allo-
cating a different number of support vectors to each
binary classifier based on its difficulty. Specifically,
we build each reduced binary SVM up one support
vector at a time, each round adding a new support
vector to the SVM with the lowest accuracy (relative
to the unreduced SVM). We stop when the overall
multi-class SVM has acceptible accuracy. This tech-
nique has yielded a new multi-class SVM with a total
of 300 support vectors and 84.5% accuracy, relative

to 85.5% accuracy for the unreduced SVM. In the fu-
ture, we hope to develop methods that “share” sup-
port vectors between different binary SVMs within
the multi-class classifier for possibly even greater re-
ductions. However, our current techniques have given
us SVMs that are at least in the right order of mag-
nitude that we can experiment with running them in
the operational MISR software framework.

6 Conclusions and Future Work

We have investigated the use of SVMs to perform
cloud-type classification of individual pixels in MISR
data. Using a combination of radiance and stereo
height information and a large amount of training
data, we were able to train a classifier that could
classify over 85% of the pixels correctly, relative to
human expert labels. Additionally, reduced-set tech-
niques were developed and applied to yield more ef-
ficient SVMs with similiar accuracy, but much faster
runtime for use in an operational setting.

We hope that this research helps open the door for
future use of SVMs in remote-sensing pixel classifica-
tion problems. While neural networks, decision trees,
genetic algorithms, and several other techniques have
been popular in such problems for years, support vec-
tor machines have many advantages, and now that
it is possible to use them with no associated speed
penalty, they should be considered more often.

Our immediate plans are to further develop our
reduced-set techniques for multi-class support vector
machines, continue to refine our cloud classifier with
more training examples and eventually turn a final
version of the classifier into an operational product.
In addition, we intend to explore incorporating tex-
ture features, which are likely to help distinguish be-
tween certain classes of clouds.
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